171 research outputs found

    Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention

    Get PDF
    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint

    Stimulation of Host Immune Defenses by a Small Molecule Protects C. elegans from Bacterial Infection

    Get PDF
    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans–based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens

    Finding Plastic Patches in Coastal Waters using Optical Satellite Data

    Get PDF
    Satellites collecting optical data offer a unique perspective from which to observe the problem of plastic litter in the marine environment, but few studies have successfully demonstrated their use for this purpose. For the first time, we show that patches of floating macroplastics are detectable in optical data acquired by the European Space Agency (ESA) Sentinel-2 satellites and, furthermore, are distinguishable from naturally occurring materials such as seaweed. We present case studies from four countries where suspected macroplastics were detected in Sentinel-2 Earth Observation data. Patches of materials on the ocean surface were highlighted using a novel Floating Debris Index (FDI) developed for the Sentinel-2 Multi-Spectral Instrument (MSI). In all cases, floating aggregations were detectable on sub-pixel scales, and appeared to be composed of a mix of seaweed, sea foam, and macroplastics. Building first steps toward a future monitoring system, we leveraged spectral shape to identify macroplastics, and a Naïve Bayes algorithm to classify mixed materials. Suspected plastics were successfully classified as plastics with an accuracy of 86

    The Interaction between Early Life Epilepsy and Autistic-Like Behavioral Consequences: A Role for the Mammalian Target of Rapamycin (mTOR) Pathway

    Get PDF
    Early life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of Rapamycin (mTOR) modulates protein translation and is dysregulated in Tuberous Sclerosis Complex, a disorder characterized by epilepsy and autism. We used a rodent model of acute hypoxia-induced neonatal seizures that results in long term increases in neuronal excitability, seizure susceptibility, and spontaneous seizures, to determine how seizures alter mTOR Complex 1 (mTORC1) signaling. We hypothesized that seizures occurring at a developmental stage coinciding with a critical period of synaptogenesis will activate mTORC1, contributing to epileptic networks and autistic-like behavior in later life. Here we show that in the rat, baseline mTORC1 activation peaks during the first three postnatal weeks, and induction of seizures at postnatal day 10 results in further transient activation of its downstream targets phospho-4E-BP1 (Thr37/46), phospho-p70S6K (Thr389) and phospho-S6 (Ser235/236), as well as rapid induction of activity-dependent upstream signaling molecules, including BDNF, phospho-Akt (Thr308) and phospho-ERK (Thr202/Tyr204). Furthermore, treatment with the mTORC1 inhibitor rapamycin immediately before and after seizures reversed early increases in glutamatergic neurotransmission and seizure susceptibility and attenuated later life epilepsy and autistic-like behavior. Together, these findings suggest that in the developing brain the mTORC1 signaling pathway is involved in epileptogenesis and altered social behavior, and that it may be a target for development of novel therapies that eliminate the progressive effects of neonatal seizures

    Urinary levels of N-nitroso compounds in relation to risk of gastric cancer: Findings from the Shanghai cohort study

    Get PDF
    Background: N-Nitroso compounds are thought to play a significant role in the development of gastric cancer. Epidemiological data, however, are sparse in examining the associations between biomarkers of exposure to N-nitroso compounds and the risk of gastric cancer. Methods: A nested case-control study within a prospective cohort of 18,244 middle-aged and older men in Shanghai, China, was conducted to examine the association between urinary level of N-nitroso compounds and risk of gastric cancer. Information on demographics, usual dietary intake, and use of alcohol and tobacco was collected through in-person interviews at enrollment. Urinary levels of nitrate, nitrite, N-nitroso-2-methylthiazolidine-4-carboxylic acid (NMTCA), N-nitrosoproline (NPRO), N-nitrososarcosine (NSAR), N-nitrosothiazolidine-4-carboxylic acid (NTCA), as well as serum H. pylori antibodies were quantified in 191 gastric cancer cases and 569 individually matched controls. Logistic regression method was used to assess the association between urinary levels of N-nitroso compounds and risk of gastric cancer. Results: Compared with controls, gastric cancer patients had overall comparable levels of urinary nitrate, nitrite, and N-nitroso compounds. Among individuals seronegative for antibodies to H. pylori, elevated levels of urinary nitrate were associated with increased risk of gastric cancer. The multivariate-adjusted odds ratios for the second and third tertiles of nitrate were 3.27 (95% confidence interval = 0.76-14.04) and 4.82 (95% confidence interval = 1.05-22.17), respectively, compared with the lowest tertile (P for trend = 0.042). There was no statistically significant association between urinary levels of nitrite or N-nitroso compounds and risk of gastric cancer. Urinary NMTCA level was significantly associated with consumption of alcohol and preserved meat and fish food items. Conclusion: The present study demonstrates that exposure to nitrate, a precursor of N-nitroso compounds, may increase the risk of gastric cancer among individuals without a history of H. pylori infection

    Modeling rare gene variation to gain insight into the oldest biomarker in autism: construction of the serotonin transporter Gly56Ala knock-in mouse

    Get PDF
    Alterations in peripheral and central indices of serotonin (5-hydroxytryptamine, 5-HT) production, storage and signaling have long been associated with autism. The 5-HT transporter gene (HTT, SERT, SLC6A4) has received considerable attention as a potential risk locus for autism-spectrum disorders, as well as disorders with overlapping symptoms, including obsessive-compulsive disorder (OCD). Here, we review our efforts to characterize rare, nonsynonymous polymorphisms in SERT derived from multiplex pedigrees carrying diagnoses of autism and OCD and present the initial stages of our effort to model one of these variants, Gly56Ala, in vivo. We generated a targeting vector to produce the Gly56Ala substitution in the Slc6a4 locus by homologous recombination. Following removal of a neomycin resistance selection cassette, animals exhibiting germline transmission of the Ala56 variant were bred to establish a breeding colony on a 129S6 background, suitable for initial evaluation of biochemical, physiological and behavioral alterations relative to SERT Gly56 (wildtype) animals. SERT Ala56 mice were achieved and exhibit a normal pattern of transmission. The initial growth and gross morphology of these animals is comparable to wildtype littermate controls. The SERT Ala56 variant can be propagated in 129S6 mice without apparent disruption of fertility and growth. We discuss both the opportunities and challenges that await the physiological/behavioral analysis of Gly56Ala transgenic mice, with particular reference to modeling autism-associated traits

    The added value of quantitative multi-voxel MR spectroscopy in breast magnetic resonance imaging

    Get PDF
    To determine whether quantitative multivoxel MRS improves the accuracy of MRI in the assessment of breast lesions. Twenty-five consecutive patients with 26 breast lesions a parts per thousand yen1 cm assessed as BI-RADS 3 or 4 with mammography underwent quantitative multivoxel MRS and contrast-enhanced MRI. The choline (Cho) concentration was calculated using the unsuppressed water signal as a concentration reference. ROC analysis established the diagnostic accuracy of MRI and MRS in the assessment of breast lesions. Respective Cho concentrations in 26 breast lesions re-classified by MRI as BI-RADS 2 (n = 5), 3 (n = 8), 4 (n = 5) and 5 (n = 8) were 1.16 +/- 0.43 (mean +/- SD), 1.43 +/- 0.47, 2.98 +/- 2.15 and 4.94 +/- 3.10 mM. Two BI-RADS 3 lesions and all BI-RADS 4 and 5 lesions were malignant on histopathology and had Cho concentrations between 1.7 and 11.8 mM (4.03 +/- 2.72 SD), which were significantly higher (P = 0.01) than that in the 11 benign lesions (0.4-1.5 mM; 1.19 +/- 0.33 SD). Furthermore, Cho concentrations in the benign and malignant breast lesions in BI-RADS 3 category differed (P = 0.01). The accuracy of combined multivoxel MRS/breast MRI BI-RADS re-classification (AUC = 1.00) exceeded that of MRI alone (AUC = 0.96 +/- 0.03). These preliminary data indicate that multivoxel MRS improves the accuracy of MRI when using a Cho concentration cut-off a parts per thousand currency sign1.5 mM for benign lesions. Key Points aEuro cent Quantitative multivoxel MR spectroscopy can improve the accuracy of contrast-enhanced breast MRI. aEuro cent Multivoxel-MRS can differentiate breast lesions by using the highest Cho-concentration. aEuro cent Multivoxel-MRS can exclude patients with benign breast lesions from further invasive diagnostic procedures

    The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 21728, doi:10.1038/srep21728Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.This research was supported by NSF Awards: OCE-1519578, OCE-1356708, BCS-1118340

    A Role for the RNA Chaperone Hfq in Controlling Adherent-Invasive Escherichia coli Colonization and Virulence

    Get PDF
    Adherent-invasive Escherichia coli (AIEC) has been linked with the onset and perpetuation of inflammatory bowel diseases. The AIEC strain LF82 was originally isolated from an ileal biopsy from a patient with Crohn's disease. The pathogenesis of LF82 results from its abnormal adherence to and subsequent invasion of the intestinal epithelium coupled with its ability to survive phagocytosis by macrophages once it has crossed the intestinal barrier. To gain further insight into AIEC pathogenesis we employed the nematode Caenorhabditis elegans as an in vivo infection model. We demonstrate that AIEC strain LF82 forms a persistent infection in C. elegans, thereby reducing the host lifespan significantly. This host killing phenotype was associated with massive bacterial colonization of the nematode intestine and damage to the intestinal epithelial surface. C. elegans killing was independent of known LF82 virulence determinants but was abolished by deletion of the LF82 hfq gene, which encodes an RNA chaperone involved in mediating posttranscriptional gene regulation by small non-coding RNAs. This finding reveals that important aspects of LF82 pathogenesis are controlled at the posttranscriptional level by riboregulation. The role of Hfq in LF82 virulence was independent of its function in regulating RpoS and RpoE activity. Further, LF82Δhfq mutants were non-motile, impaired in cell invasion and highly sensitive to various chemical stress conditions, reinforcing the multifaceted function of Hfq in mediating bacterial adaptation. This study highlights the usefulness of simple non-mammalian infection systems for the identification and analysis of bacterial virulence factors

    Effects of Interleukin-10 Polymorphisms, Helicobacter pylori Infection, and Smoking on the Risk of Noncardia Gastric Cancer

    Get PDF
    OBJECTIVE: Both variations in the interleukin-10 (IL10) gene and environmental factors are thought to influence inflammation and gastric carcinogenesis. Therefore, we investigated the associations between IL10 polymorphisms, Helicobacter pylori (H. pylori) infection, and smoking in noncardia gastric carcinogenesis in Koreans. METHODS: We genotyped three promoter polymorphisms (-1082A>G, -819T>C, and -592 A>C) of IL10 in a case-control study of 495 noncardia gastric cancer patients and 495 sex- and age-matched healthy controls. Multiple logistic regression models were used to detect the effects of IL10 polymorphisms, H. pylori infection, and smoking on the risk of gastric cancer, which was stratified by the histological type of gastric cancer. RESULTS: The IL10-819C and -592C alleles were found to have complete linkage disequilibrium, and all three IL10 polymorphisms were associated with an increased risk of intestinal-type noncardia gastric cancer. These associations were observed only in H. pylori-positive subjects and current smokers. A statistically significant interaction between the IL10-592 genotype and H. pylori infection on the risk of intestinal-type gastric cancer was observed (P for interaction  = 0.047). In addition, H. pylori-positive smokers who were carriers of either the IL10-1082G (OR [95% CI]  = 17.76 [6.17-51.06]) or the -592C (OR [95% CI]  = 8.37 [2.79-25.16]) allele had an increased risk of intestinal-type gastric cancer compared to H. pylori-negative nonsmokers homozygous for IL10-1082A and -592A, respectively. The interaction between the IL10-1082 polymorphism and the combined effects of H. pylori infection and smoking tended towards significance (P for interaction  = 0.080). CONCLUSIONS: Inflammation-related genetic variants may interact with H. pylori infection and smoking to increase the risk of noncardia gastric cancer, particularly the intestinal-type. These findings may be helpful in identifying individuals at an increased risk for developing noncardia gastric cancer
    corecore